Regulation and termination of T cell responses; immunological tolerance

Abul K. Abbas, MD
UCSF

Lecture outline

• Principles of immune regulation

• Self-tolerance; mechanisms of central and peripheral tolerance

• Regulatory T cells
Balancing lymphocyte activation and control

Activation
- Effector T cells
 - Normal: reactions against pathogens
 - Pathologic: inflammatory disease, e.g. caused by reactions against self

Tolerance
- Regulatory T cells
 - No response to self
 - Controlled response to pathogens

The importance of immune regulation

- To avoid excessive lymphocyte activation and tissue damage during normal protective responses against infections
- To prevent inappropriate reactions against self antigens ("self-tolerance")
- Failure of control mechanisms is the underlying cause of immune-mediated inflammatory diseases

Take home messages
Immunological tolerance

- **Definition:**
 - unresponsiveness to an antigen induced by exposure of lymphocytes to that antigen; antigen-specific (unlike “immunosuppression”)

- **Significance:**
 - All individuals are tolerant of their own antigens (self-tolerance); breakdown of self-tolerance results in autoimmunity
 - Therapeutic potential: Inducing tolerance may be exploited to prevent graft rejection, treat autoimmune and allergic diseases, and prevent immune responses in gene therapy and stem cell transplantation

Central and peripheral tolerance to self

The principal fate of lymphocytes that recognize self antigens in the generative organs is death (deletion), BUT:

- Some B cells may change their specificity (called "receptor editing")
- Some T cells may differentiate into regulatory (suppressor) T lymphocytes

Consequences of self antigen recognition in thymus

Deletion of self-reactive T cells in the thymus: how are self antigens expressed in the thymus?

AIRE (autoimmune regulator) is a putative transcription factor that stimulates expression of many self antigens in the medullary epithelial cells of the thymus, required for deletion of self-reactive thymocytes.
Central tolerance

- Lymphocytes that see self antigens before they are mature are either eliminated or rendered harmless.
- Probably continues to occur at some level throughout life (as new lymphocytes are produced from bone marrow stem cells).
- Unlikely that it will be possible to manipulate these processes for therapy.

Take home messages

Peripheral tolerance

Normal T cell response

Anergy

Deletion

Suppression

Functional unresponsiveness

Apoptosis (activation-induced cell death)

Block in activation
Multiple mechanisms demonstrated in different experimental systems

No clear evidence that natural self antigens induce anergy in humans

Therapeutic potential: can we administer antigens in ways that induce T-cell anergy?

Take home messages
"Activation-induced cell death": death of mature T cells upon recognition of self antigens

Both pathways cooperate to prevent reactions against self

ALPS Patient 2: An unusual mutation

Healthy female - at 18 months developed cervical adenopathy. Biopsy showed ‘reactive hyperplasia’ Pt developed anemia with hypersplenism, hematuria, proteinuria and renal insufficiency due to mesangial glomerulonephritis, then primary biliary infiltration. Evaluation at NIH: lymphadenopathy persists, ANA (+) 1:320, CD4/CD8 cells 25% of αβ T cells, increased B cells; Fas surface expression is normal Heterozygous Fas splice mutation resulting in loss of exons 3, 4 (AA 52-96)
Properties of regulatory T cells

- **Phenotype:** CD4+, high IL-2 receptor (CD25), low IL-7 receptor, Foxp3 transcription factor; other markers
- **Significance:** Foxp3 mutations --> autoimmune disease (IPEX); many autoimmune diseases may be associated with defects in or resistance to Tregs
- **Mechanisms of action:** multiple
 - secretion of immune-suppressive cytokines (TGFβ, IL-10; IL-35?)
 - inhibition of APC function (role of CTLA-4?)

Take home messages
Populations and markers of Tregs

- **Thymic (natural)**
 - Induced by self antigen recognition during T cell maturation
- **Peripheral (adaptive)**
 - In response to antigen exposure in the periphery; contribution to preventing inflammatory disease?
- **Induced (in vitro)**
 - Culture with TGFβ + IL-2; therapeutic options
- **Others?**

- **Markers**
 - CD4, CD25, Foxp3, low CD127 (IL-7 receptor)
 - Foxp3 may be transiently induced on many activated T cells, stable in Tregs (importance of DNA methylation assays?)

Regulatory T cells

- Explosion of information about the generation, properties, functions and significance of these cells

- Will cellular therapy with ex vivo expanded Treg become a reality?

- **Therapeutic goal:** induction or activation of Treg in immune diseases

Take home messages
The therapeutic potential of regulatory T lymphocytes

- Cell transfer of autologous Tregs to treat autoimmune disease, transplant rejection, graft-vs-host disease
 - Purify patient's own Tregs, expand ex vivo
 - Induce Treg (Tr1) cells from naïve T cells
 - Ongoing trials in GvHD, transplantation
- Challenges:
 - Adequate cell numbers
 - Stability (value of assays for Foxp3 demethylation?)
 - Specificity (transduction of antigen-specific TCRs?)
- Risks:
 - Non-specific immune suppression
 - Conversion to pathogenic T cells

Induction of regulatory T cells in vivo

- Administer antigen or antigen mimic in ways that preferentially induce Tregs
 - Trials of weakly activating (non-FcR binding) anti-CD3 antibody in early onset type 1 diabetes (Bluestone); risk of reactivating memory cells
 - Other approaches for preferentially activating Tregs in vivo?
 - The unexpected potential of interleukin-2
Functions of Interleukin-2: the dogma

Interleukin-2 (IL-2, T-cell growth factor)

- APC
- Helper T lymphocyte
- Autocrine action of IL-2
- Proliferation, survival, and differentiation of T cells
- Effector and memory T cells

The unexpected biology of IL-2

- Interleukin-2 is the prototypic T cell growth factor (TCGF), required for initiating clonal expansion of T cells in response to antigen

- **BUT:** knockout of IL-2 or the α or β chain of the IL-2R results not in immune deficiency but in systemic autoimmunity and lymphoproliferation
Dual roles of IL-2 in T cell responses

Induction of immune response

- APC
- Costimulator (CD28)
- IL-2
- Expansion and differentiation: effector T cells

Control of immune response

- Resting (naive) T cell
- IL-2
- Self-reactive T cell in thymus or periphery
- Regulatory T cells

Surprising conclusion from knockout mice: the non-redundant function of IL-2 is in controlling immune responses

Regulating immune responses: where are we?

- Elucidating the mechanisms of immune regulation is one of the dominant themes of modern Immunology; obvious relevance to immune-mediated inflammatory diseases, therapeutics, vaccines
 - Difficult to extrapolate concepts to therapy

- Challenges:
 - Complexity: multiple connected pathways
 - Often limited molecular definition
 - Can best (only?) be studied in vivo
 - Reliance on experimental (animal) models